
C Reference Cheat Sheet
by Ashlyn Black (Ashlyn Black) via cheatography.com/20410/cs/3196/

Number LiteralsNumber Literals

IntegersIntegers

0b11111111 binary 0B11111111 binary

0377 octal 255 decimal

0xff hexadecimal 0xFF hexadecimal

Real NumbersReal Numbers

88.0f / 88.1234567f

single precision float (f suffix)

88.0 / 88.123456789012345

double precision float (no f suffix)

SignageSignage

42 / +42 positive -42 negative

Binary notation 0b... / 0B... is available on GCC and most but not
all C compilers.

VariablesVariables

DeclaringDeclaring

int x; A variable.

char x = 'C'; A variable & initialising it.

float x, y, z; Multiple variables of the same type.

Variables (cont)Variables (cont)

const int x = 88; A constant variable: can't assign to
after declaration (compiler enforced.)

NamingNaming

johnny5IsAlive; Alphanumeric, not a keyword, begins
with a letter.

2001ASpaceOddysey; Doesn't begin with a letter.

while; Reserved keyword.

how exciting!; Non-alphanumeric.

iamaverylongvariablenameohmygoshyesiam;

Longer than 31 characters (C89 & C90 only)

Constants are CAPITALISED. Function names usually take the form
of a verb eg. plotRobotUprising().

Primitive Variable TypesPrimitive Variable Types

*applicable but not limited to most ARM, AVR, x86 & x64
installations

[class] [qualifier] [unsigned] type/void name;

by ascending arithmetic conversion

IntegersIntegers

Type Bytes Value Range

By Ashlyn BlackAshlyn Black (Ashlyn
Black)
cheatography.com/ashlyn-
black/

ashlynblack.com

Published 28th January, 2015.
Last updated 12th May, 2016.
Page 1 of 22.

Sponsored by Readable.comReadable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/ashlyn-black/
http://www.cheatography.com/ashlyn-black/cheat-sheets/c-reference
http://www.cheatography.com/ashlyn-black/
http://ashlynblack.com
https://readable.com

C Reference Cheat Sheet
by Ashlyn Black (Ashlyn Black) via cheatography.com/20410/cs/3196/

Primitive Variable Types (cont)Primitive Variable Types (cont)

char 1 unsigned OROR signed

unsigned char 1 0 to 2 -1

signed char 1 -2 to 2 -1

int 2 / 4 unsigned OROR signed

unsigned int 2 / 4 0 to 2 -1 OROR 2 -1

signed int 2 / 4 -2 to 2 -1 OROR -2 to 2 -1

short 2 unsigned OROR signed

unsigned short 2 0 to 2 -1

signed short 2 -2 to 2 -1

long 4 / 8 unsigned OROR signed

unsigned long 4 / 8 0 to 2 -1 OROR 2 -1

signed long 4 / 8 -2 to 2 -1 OROR -2 to 2 -1

Primitive Variable Types (cont)Primitive Variable Types (cont)

long long 8 unsigned OROR signed

unsigned long long 8 0 to 2 -1

signed long long 8 -2 to 2 -1

FloatsFloats

Type Bytes Value Range (Normalized)

float 4 ±1.2×10 to ±3.4×10

double 8 / 4 ±2.3×10 to ±1.7×10 OROR
alias to float for AVR.

long double ARM: 8, AVR: 4, x86: 10, x64: 16

QualifiersQualifiers

const type Flags variable as read-only (compiler can
optimise.)

By Ashlyn BlackAshlyn Black (Ashlyn
Black)
cheatography.com/ashlyn-
black/

ashlynblack.com

Published 28th January, 2015.
Last updated 12th May, 2016.
Page 2 of 22.

Sponsored by Readable.comReadable.com
Measure your website readability!
https://readable.com

8

7 7

16 31

15 15 31 32

16

15 15

32 64

31 31 63 63

64

63 63

-38 38

-308 308

http://www.cheatography.com/
http://www.cheatography.com/ashlyn-black/
http://www.cheatography.com/ashlyn-black/cheat-sheets/c-reference
http://www.cheatography.com/ashlyn-black/
http://ashlynblack.com
https://readable.com

C Reference Cheat Sheet
by Ashlyn Black (Ashlyn Black) via cheatography.com/20410/cs/3196/

Primitive Variable Types (cont)Primitive Variable Types (cont)

volatile type Flags variable as unpredictable (compiler
cannot optimise.)

Storage ClassesStorage Classes

register Quick access required. May be stored in RAM
OROR a register. Maximum size is register size.

static Retained when out of scope. static global
variables are confined to the scope of the
compiled object file they were declared in.

extern Variable is declared by another file.

TypecastingTypecasting

(type)a Returns a as data type.

Primitive Variable Types (cont)Primitive Variable Types (cont)

char x = 1, y = 2; float z = (float) x / y;

Some types (denoted with OROR) are architecture dependant.

There is no primitive boolean type, only zero (false, 0) and non-zero
(true, usually 1.)

Extended Variable TypesExtended Variable Types

[class] [qualifier] type name;

by ascending arithmetic conversion

From the From the stdint.h Library Library

Type Bytes Value Range

int8_t 1 -2 to 2 -1

uint8_t 1 0 to 2 -1

int16_t 2 -2 to 2 -1

uint16_t 2 0 to 2 -1

int32_t 4 -2 to 2 -1

uint32_t 4 0 to 2 -1

int64_t 8 -2 to 2 -1

uint64_t 8 0 to 2 -1

From the From the stdbool.h Library Library

Type Bytes Value Range

By Ashlyn BlackAshlyn Black (Ashlyn
Black)
cheatography.com/ashlyn-
black/

ashlynblack.com

Published 28th January, 2015.
Last updated 12th May, 2016.
Page 3 of 22.

Sponsored by Readable.comReadable.com
Measure your website readability!
https://readable.com

7 7

8

15 15

16

31 31

32

63 63

64

http://www.cheatography.com/
http://www.cheatography.com/ashlyn-black/
http://www.cheatography.com/ashlyn-black/cheat-sheets/c-reference
http://www.cheatography.com/ashlyn-black/
http://ashlynblack.com
https://readable.com

C Reference Cheat Sheet
by Ashlyn Black (Ashlyn Black) via cheatography.com/20410/cs/3196/

Extended Variable Types (cont)Extended Variable Types (cont)

bool 1 true / false or 0 / 1

The stdint.h library was introduced in C99 to give integer types
architecture-independent lengths.

StructuresStructures

DefiningDefining

struct strctName{ type x; type y; }; A structure
type strct
Name with
two
members, x
and y. Note
trailing
semicolon

struct item{ struct item *next; }; A structure
with a
recursive
structure
pointer
inside.
Useful for
linked lists.

DeclaringDeclaring

struct strctName varName; A variable v
arName as
structure
type strct
Name.

struct strctName *ptrName; A strctNa
me structure
type pointer,
ptrName.

struct strctName{ type a; type b; } varName; Shorthand
for defining
strctName
and
declaring va
rName as
that
structure
type.

Structures (cont)Structures (cont)

struct strctName varName = { a, b }; A variable varN
ame as
structure type s
trctName and
initialising its
members.

AccessingAccessing

varName.x Member x of
structure varNa
me.

ptrName->x Value of
structure pointer
ptrName
member x.

Bit FieldsBit Fields

struct{char a:4, b:4} x; Declares x with
two members a
and b, both four
bits in size (0 to
15.)

Array members can't be assigned bit fields.

Type DefinitionsType Definitions

DefiningDefining

typedef unsigned short uint16; Abbreviating
a longer
type name
to uint16

typedef struct structName{int a, b;}newType; Creating a
ewType
from a
structure.

By Ashlyn BlackAshlyn Black (Ashlyn
Black)
cheatography.com/ashlyn-
black/

ashlynblack.com

Published 28th January, 2015.
Last updated 12th May, 2016.
Page 4 of 22.

Sponsored by Readable.comReadable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/ashlyn-black/
http://www.cheatography.com/ashlyn-black/cheat-sheets/c-reference
http://www.cheatography.com/ashlyn-black/
http://ashlynblack.com
https://readable.com

C Reference Cheat Sheet
by Ashlyn Black (Ashlyn Black) via cheatography.com/20410/cs/3196/

Type Definitions (cont)Type Definitions (cont)

typedef enum typeName{false, true}bool; Creating an
enumerated
bool type.

DeclaringDeclaring

uint16 x = 65535; Variable x
as type uin
t16.

newType y = {0, 0}; Structure y
as type new
Type.

UnionsUnions

DefiningDefining

union uName{int x; char y[8];} A union type uName with
two members, x & y.
Size is same as biggest
member size.

DeclaringDeclaring

union uN vName; A variable vName as
union type uN.

AccessingAccessing

vName.y[int] Members cannot store
values concurrently.
Setting y will corrupt x.

Unions are used for storing multiple data types in the same area of
memory.

EnumerationEnumeration

DefiningDefining

enum bool { false, true }; A custom data type bool with
two possible states: false or
true.

DeclaringDeclaring

enum bool varName; A variable varName of data
type bool.

AssigningAssigning

varName = true; Variable varName can only be
assigned values of either fal
se or true.

EvaluatingEvaluating

if(varName == false) Testing the value of varName.

PointersPointers

DeclaringDeclaring

type *x; Pointers have a data type like normal variables.

void *v; They can also have an incomplete type. Operators
other than assignment cannot be applied as the length
of the type is unknown.

By Ashlyn BlackAshlyn Black (Ashlyn
Black)
cheatography.com/ashlyn-
black/

ashlynblack.com

Published 28th January, 2015.
Last updated 12th May, 2016.
Page 5 of 22.

Sponsored by Readable.comReadable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/ashlyn-black/
http://www.cheatography.com/ashlyn-black/cheat-sheets/c-reference
http://www.cheatography.com/ashlyn-black/
http://ashlynblack.com
https://readable.com

C Reference Cheat Sheet
by Ashlyn Black (Ashlyn Black) via cheatography.com/20410/cs/3196/

Pointers (cont)Pointers (cont)

struct type *y; A data structure pointer.

type z[]; An array/string name can be used as a
pointer to the first array element.

AccessingAccessing

x A memory address.

*x Value stored at that address.

y->a Value stored in structure pointer y member
a.

&varName Memory address of normal variable varNam
e.

*(type *)v Dereferencing a void pointer as a type
pointer.

A pointer is a variable that holds a memory location.

ArraysArrays

DeclaringDeclaring

type name[int]; You set array length.

type name[int] = {x, y, z}; You set array length and
initialise elements.

Arrays (cont)Arrays (cont)

type name[int] = {x}; You set array length
and initialise all
elements to x.

type name[] = {x, y, z}; Compiler sets array
length based on
initial elements.

Size cannot be changed after declaration.

DimensionsDimensions

name[int] One dimension
array.

name[int][int] Two dimensional
array.

AccessingAccessing

name[int] Value of element in
t in array name.

*(name + int) Same as name[int
].

Elements are contiguously numbered ascending from 0.

&name[int] Memory address of
element int in array
name.

name + int Same as &name[
int].

Elements are stored in contiguous memory.

MeasuringMeasuring

sizeof(array) / sizeof(arrayType) Returns length of ar
ray. (Unsafe)

By Ashlyn BlackAshlyn Black (Ashlyn
Black)
cheatography.com/ashlyn-
black/

ashlynblack.com

Published 28th January, 2015.
Last updated 12th May, 2016.
Page 6 of 22.

Sponsored by Readable.comReadable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/ashlyn-black/
http://www.cheatography.com/ashlyn-black/cheat-sheets/c-reference
http://www.cheatography.com/ashlyn-black/
http://ashlynblack.com
https://readable.com

C Reference Cheat Sheet
by Ashlyn Black (Ashlyn Black) via cheatography.com/20410/cs/3196/

Arrays (cont)Arrays (cont)

sizeof(array) / sizeof(array[0]) Returns length of arr
ay. (Safe)

StringsStrings

'A' character Single quotes.

"AB" string Double quotes.

\0 Null terminator.

Strings are char arrays.

char name[4] = "Ash";

is equivalent to

char name[4] = {'A', 's', 'h', '\0'};

int i; for(i = 0; name[i]; i++){}

\0 evaluates as false.

Strings must include a char element for \0.

Escape CharactersEscape Characters

\a alarm (bell/beep) \b backspace

\f formfeed \n newline

\r carriage return \t horizontal tab

\v vertical tab \\ backslash

\' single quote \" double quote

Escape Characters (cont)Escape Characters (cont)

\? question mark

\nnn Any octal ANSI character code.

\xhh Any hexadecimal ANSI character code.

FunctionsFunctions

DeclaringDeclaring

type/void funcName([args...]){ [return var;] }

Function names follow the same restrictions as variable names but
must alsoalso be unique.

type/void Return value type (void if none.)

funcName() Function name and argument parenthesis.

args... Argument types & names (void if none.)

{} Function content delimiters.

By Ashlyn BlackAshlyn Black (Ashlyn
Black)
cheatography.com/ashlyn-
black/

ashlynblack.com

Published 28th January, 2015.
Last updated 12th May, 2016.
Page 7 of 22.

Sponsored by Readable.comReadable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/ashlyn-black/
http://www.cheatography.com/ashlyn-black/cheat-sheets/c-reference
http://www.cheatography.com/ashlyn-black/
http://ashlynblack.com
https://readable.com

C Reference Cheat Sheet
by Ashlyn Black (Ashlyn Black) via cheatography.com/20410/cs/3196/

Functions (cont)Functions (cont)

return var; Value to return to
function call origin. Skip
for void type functions.
Functions exit
immediately after a ret
urn.

By Value vs By PointerBy Value vs By Pointer

void f(type x); f(y); Passing variable y to
function f argument x
(by value.)

void f(type *x); f(array); Passing an array/string
to function f argument x
(by pointer.)

void f(type *x); f(structure); Passing a structure to
function f argument x
(by pointer.)

void f(type *x); f(&y); Passing variable y to
function f argument x
(by pointer.)

type f(){ return x; } Returning by value.

type f(){ type x; return &x; } Returning a variable by
pointer.

Functions (cont)Functions (cont)

type f(){ static type x[]; return &x; } Returning an
array/string/structure
by pointer. The
tic qualifier is
necessary otherwise
x won't exist after
the function exits.

Passing by pointer allows you to change the originating variable within the
function.

ScopeScope

int f(){ int i = 0; } i++;

i is declared inside f(), it doesn't exist outside that function.

PrototypingPrototyping

type funcName(args...);

Place before declaring or referencing respective function (usually before
n.)

type funcName([args...]) Same type, name
and args... as
respective function.

; Semicolon instead of
function delimiters.

By Ashlyn BlackAshlyn Black (Ashlyn
Black)
cheatography.com/ashlyn-
black/

ashlynblack.com

Published 28th January, 2015.
Last updated 12th May, 2016.
Page 8 of 22.

Sponsored by Readable.comReadable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/ashlyn-black/
http://www.cheatography.com/ashlyn-black/cheat-sheets/c-reference
http://www.cheatography.com/ashlyn-black/
http://ashlynblack.com
https://readable.com

C Reference Cheat Sheet
by Ashlyn Black (Ashlyn Black) via cheatography.com/20410/cs/3196/

main()main()

int main(int argc, char *argv[]){return int;}

AnatomyAnatomy

int main Program entry point.

int argc # of command line arguments.

char *argv[] Command line arguments in an array of strings.
#1 is always the program filename.

return int; Exit status (integer) returned to the OS upon
program exit.

Command Line ArgumentsCommand Line Arguments

app two 3 Three arguments, "app", "two" and "3".

app "two 3" Two arguments, "app" and "two 3".

main is the first function called when the program executes.

Conditional (Branching)Conditional (Branching)

if, else if, elseif, else if, else

if(a) b; Evaluates b if a is true.

if(a){ b; c; } Evaluates b and c if a is true.

if(a){ b; }else{ c; } Evaluates b if a is true, c otherwise.

Conditional (Branching) (cont)Conditional (Branching) (cont)

if(a){ b; }else if(c){ d; }else{ e; }

switch, case, breakswitch, case, break

switch(a){ case b: c; }

switch(a){ default: b; }

switch(a){ case b: case c: d; }

switch(a){ case b: c; case d: e; default: f; }

switch(a){ case b: c; break; case d: e; break; default: f; }

By Ashlyn BlackAshlyn Black (Ashlyn
Black)
cheatography.com/ashlyn-
black/

ashlynblack.com

Published 28th January, 2015.
Last updated 12th May, 2016.
Page 9 of 22.

Sponsored by Readable.comReadable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/ashlyn-black/
http://www.cheatography.com/ashlyn-black/cheat-sheets/c-reference
http://www.cheatography.com/ashlyn-black/
http://ashlynblack.com
https://readable.com

C Reference Cheat Sheet
by Ashlyn Black (Ashlyn Black) via cheatography.com/20410/cs/3196/

Iterative (Looping)Iterative (Looping)

whilewhile

int x = 0; while(x < 10){ x += 2; }

Loop skipped if test condition initially false.

int x = 0; Declare and initialise integer x.

while() Loop keyword and condition parenthesis.

x < 10 Test condition.

{} Loop delimiters.

x += 2; Loop contents.

do whiledo while

char c = 'A'; do { c++; } while(c != 'Z');

Always runs through loop at least once.

char c = 'A'; Declare and initialise character c.

do Loop keyword.

{} Loop delimiters.

c++; Loop contents.

while(); Loop keyword and condition parenthesis. Note
semicolon.

c != 'Z' Test condition.

forfor

int i; for(i = 0; n[i] != '\0'; i++){} (C89)

Iterative (Looping) (cont)Iterative (Looping) (cont)

OR

for(int i = 0; n[i] != '\0'; i++){} (C99+)

Compact increment/decrement based loop.

int i; Declares integer i.

for() Loop keyword.

i = 0; Initialises integer i. Semicolon.

n[i] != '\0'; Test condition. Semicolon.

i++ Increments i. No semicolon.

{} Loop delimiters.

continuecontinue

int i=0; while(i<10){ i++; continue; i--;}

Skips rest of loop contents and restarts at the beginning of the loop.

breakbreak

int i=0; while(1){ if(x==10){break;} i++; }

Skips rest of loop contents and exits loop.

By Ashlyn BlackAshlyn Black (Ashlyn
Black)
cheatography.com/ashlyn-
black/

ashlynblack.com

Published 28th January, 2015.
Last updated 12th May, 2016.
Page 10 of 22.

Sponsored by Readable.comReadable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/ashlyn-black/
http://www.cheatography.com/ashlyn-black/cheat-sheets/c-reference
http://www.cheatography.com/ashlyn-black/
http://ashlynblack.com
https://readable.com

C Reference Cheat Sheet
by Ashlyn Black (Ashlyn Black) via cheatography.com/20410/cs/3196/

Console Input/OutputConsole Input/Output

#include <stdio.h>

CharactersCharacters

getchar() Returns a single
character's ANSI code
from the input stream
buffer as an integer.
(safe)

putchar(int) Prints a single character
from an ANSI code
integer to the output
stream buffer.

StringsStrings

gets(strName) Reads a line from the
input stream into a string
variable. (Unsafe,
removed in C11.)

Alternative

fgets(strName, length, stdin); Reads a line from the
input stream into a string
variable. (Safe)

puts("string") Prints a string to the
output stream.

Formatted DataFormatted Data

Console Input/Output (cont)Console Input/Output (cont)

scanf("%d", &x) Read value/s (type
defined by format
string) into variable/s
(type must match)
from the input stream.
Stops reading at the
first whitespace. &
prefix not required for
arrays (including
strings.) (unsafe)

printf("I love %c %d!", 'C', 99
)

Prints data (formats
defined by the format
string) as a string to
the output stream.

Alternative

By Ashlyn BlackAshlyn Black (Ashlyn
Black)
cheatography.com/ashlyn-
black/

ashlynblack.com

Published 28th January, 2015.
Last updated 12th May, 2016.
Page 11 of 22.

Sponsored by Readable.comReadable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/ashlyn-black/
http://www.cheatography.com/ashlyn-black/cheat-sheets/c-reference
http://www.cheatography.com/ashlyn-black/
http://ashlynblack.com
https://readable.com

C Reference Cheat Sheet
by Ashlyn Black (Ashlyn Black) via cheatography.com/20410/cs/3196/

Console Input/Output (cont)Console Input/Output (cont)

fgets(strName, length, stdin); sscanf(strName, "%d", &x); Uses fg
ets to
limit the
input
length,
then
uses ss
canf to
read the
resulting
string in
place of
scanf.
(safe)

The stream buffers must be flushed to reflect changes. String
terminator characters can flush the output while newline characters

can flush the input.

Safe functions are those that let you specify the length of the input.
Unsafe functions do not, and carry the risk of memory overflow.

File Input/OutputFile Input/Output

#include <stdio.h>

OpeningOpening

FILE *fptr = fopen(filename, mode);

FILE *fptr Declares fptr as a FILE type pointer (stores
stream location instead of memory location.)

fopen() Returns a stream location pointer if successful, 0
otherwise.

File Input/Output (cont)File Input/Output (cont)

filename String containing file's directory path & name.

mode String specifying the file access mode.

Modes

"r" / "rb" Read existing text/binary file.

"w" / "wb" Write new/over existing text/binary file.

"a" / "ab" Write new/append to existing text/binary file.

"r+" / "r+b" / "r
b+"

Read and write existing text/binary file.

"w+" / "w+b" / "w
b+"

Read and write new/over existing text/binary
file.

"a+" / "a+b" / "a
b+"

Read and write new/append to existing
text/binary file.

ClosingClosing

By Ashlyn BlackAshlyn Black (Ashlyn
Black)
cheatography.com/ashlyn-
black/

ashlynblack.com

Published 28th January, 2015.
Last updated 12th May, 2016.
Page 12 of 22.

Sponsored by Readable.comReadable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/ashlyn-black/
http://www.cheatography.com/ashlyn-black/cheat-sheets/c-reference
http://www.cheatography.com/ashlyn-black/
http://ashlynblack.com
https://readable.com

C Reference Cheat Sheet
by Ashlyn Black (Ashlyn Black) via cheatography.com/20410/cs/3196/

File Input/Output (cont)File Input/Output (cont)

fclose(fptr); Flushes buffers and
closes stream. Returns 0
if successful, EOF
otherwise.

Random AccessRandom Access

ftell(fptr) Return current file
position as a long
integer.

fseek(fptr, offset, origin); Sets current file position.
Returns false is
successful, true
otherwise. The offset
is a long integer type.

Origins

SEEK_SET Beginning of file.

SEEK_CUR Current position in file.

SEEK_END End of file.

UtilitiesUtilities

feof(fptr) Tests end-of-file
indicator.

rename(strOldName, strNewName) Renames a file.

remove(strName) Deletes a file.

CharactersCharacters

File Input/Output (cont)File Input/Output (cont)

fgetc(fptr) Returns character read or
EOF if unsuccessful. (safe)

fputc(int c, fptr) Returns character written or
EOF if unsuccessful.

StringsStrings

fgets(char *s, int n, fptr) Reads n-1 characters from
file fptr into string s.
Stops at EOF and \n. (safe)

fputs(char *s, fptr) Writes string s to file fptr.
Returns non-negative on
success, EOF otherwise.

Formatted DataFormatted Data

fscanf(fptr, format, [...]) Same as scanf with
additional file pointer
parameter. (unsafe)

fprintf(fptr, format, [...]) Same as printf with
additional file pointer
parameter.

Alternative

By Ashlyn BlackAshlyn Black (Ashlyn
Black)
cheatography.com/ashlyn-
black/

ashlynblack.com

Published 28th January, 2015.
Last updated 12th May, 2016.
Page 13 of 22.

Sponsored by Readable.comReadable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/ashlyn-black/
http://www.cheatography.com/ashlyn-black/cheat-sheets/c-reference
http://www.cheatography.com/ashlyn-black/
http://ashlynblack.com
https://readable.com

C Reference Cheat Sheet
by Ashlyn Black (Ashlyn Black) via cheatography.com/20410/cs/3196/

File Input/Output (cont)File Input/Output (cont)

fgets(strName, length, fptr); sscanf(strName, "%d", &x); Uses fge
ts to limit
the input
length,
then uses
sscanf to
read the
resulting
string in
place of s
canf.
(safe)

BinaryBinary

fread(void *ptr, sizeof(element), number, fptr) Reads a n
umber of
elements
from fptr
to array *
ptr.
(safe)

fwrite(void *ptr, sizeof(element), number, fptr) Writes a n
umber of
elements
to file fpt
r from
array *pt
r.

Safe functions are those that let you specify the length of the input.
Unsafe functions do not, and carry the risk of memory overflow.

Placeholder Types (f/printf And f/scanf)Placeholder Types (f/printf And f/scanf)

printf("%d%d...", arg1, arg2...);

TypeType ExampleExample DescriptionDescription

%d or %i -42 Signed decimal integer.

Placeholder Types (f/printf And f/scanf) (cont)Placeholder Types (f/printf And f/scanf) (cont)

%u 42 Unsigned decimal integer.

%o 52 Unsigned octal integer.

%x or %X 2a or 2A Unsigned hexadecimal
integer.

%f or %F 1.21 Signed decimal float.

%e or %E 1.21e+9 or 1.21E+9 Signed decimal w/ scientific
notation.

%g or %G 1.21e+9 or 1.21E+9 Shortest representation of
%f/%F or %e/%E.

%a or %A 0x1.207c8ap+30 or 0X1
.207C8AP+30

Signed hexadecimal float.

%c a A character.

%s A String. A character string.

%p A pointer.

%% % A percent character.

By Ashlyn BlackAshlyn Black (Ashlyn
Black)
cheatography.com/ashlyn-
black/

ashlynblack.com

Published 28th January, 2015.
Last updated 12th May, 2016.
Page 14 of 22.

Sponsored by Readable.comReadable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/ashlyn-black/
http://www.cheatography.com/ashlyn-black/cheat-sheets/c-reference
http://www.cheatography.com/ashlyn-black/
http://ashlynblack.com
https://readable.com

C Reference Cheat Sheet
by Ashlyn Black (Ashlyn Black) via cheatography.com/20410/cs/3196/

Placeholder Types (f/printf And f/scanf) (cont)Placeholder Types (f/printf And f/scanf) (cont)

%n No output, saves # of characters printed so far. Respective
printf argument must be an integer pointer.

The pointer format is architecture and implementation dependant.

Placeholder Formatting (f/printf And f/scanf)Placeholder Formatting (f/printf And f/scanf)

%[Flags][Width][.Precision][Length]Type

FlagsFlags

- Left justify instead of default right justify.

+ Sign for both positive numbers and negative.

Precede with 0, 0x or 0X for %o, %x and %X tokens.

space Left pad with spaces.

0 Left pad with zeroes.

WidthWidth

integer Minimum number of characters to print: invokes padding
if necessary. Will not truncate.

* Width specified by a preceding argument in printf.

Placeholder Formatting (f/printf And f/scanf) (cont)Placeholder Formatting (f/printf And f/scanf) (cont)

PrecisionPrecision

.integer Minimum # of digits to print for %d, %i, %o, %u, %x, %X.
Left pads with zeroes. Will not truncate. Skips values
of 0.

 Minimum # of digits to print after decimal point for %a,
%A, %e, %E, %f, %F (default of 6.)

 Minimum # of significant digits to print for %g & %G.

 Maximum # of characters to print from %s (a string.)

. If no integer is given, default of 0.

.* Precision specified by a preceding argument in print
f.

LengthLength

hh Display a char as int.

h Display a short as int.

l Display a long integer.

ll Display a long long integer.

L Display a long double float.

z Display a size_t integer.

By Ashlyn BlackAshlyn Black (Ashlyn
Black)
cheatography.com/ashlyn-
black/

ashlynblack.com

Published 28th January, 2015.
Last updated 12th May, 2016.
Page 15 of 22.

Sponsored by Readable.comReadable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/ashlyn-black/
http://www.cheatography.com/ashlyn-black/cheat-sheets/c-reference
http://www.cheatography.com/ashlyn-black/
http://ashlynblack.com
https://readable.com

C Reference Cheat Sheet
by Ashlyn Black (Ashlyn Black) via cheatography.com/20410/cs/3196/

Placeholder Formatting (f/printf And f/scanf) (cont)Placeholder Formatting (f/printf And f/scanf) (cont)

j Display a intmax_t integer.

t Display a ptrdiff_t integer.

Preprocessor DirectivesPreprocessor Directives

#include <inbuilt.h> Replaces line with contents of a
standard C header file.

#include "./custom.h" Replaces line with contents of a
custom header file. Note dir path
prefix & quotations.

#define NAME value Replaces all occurrences of NAME
with value.

CommentsComments

// We're single-line comments!
// Nothing compiled after // on these lines.
/* I'm a multi-line comment!
 Nothing compiled between
 these delimiters. */

C Reserved KeywordsC Reserved Keywords

_Alignas break float signed

_Alignof case for sizeof

_Atomic char goto static

_Bool const if struct

_Complex continue inline switch

_Generic default int typedef

_Imaginary do long union

_Noreturn double register unsigned

_Static_assert else restrict void

_Thread_local enum return volatile

auto extern short while

_A-Z... __...

C / POSIX Reserved KeywordsC / POSIX Reserved Keywords

E[0-9]... E[A-Z]... is[a-z]... to[a-z]...

LC_[A-Z]... SIG[A-Z]... SIG_[A-Z]... str[a-z]...

mem[a-z]... wcs[a-z]... ..._t

GNU Reserved Names

By Ashlyn BlackAshlyn Black (Ashlyn
Black)
cheatography.com/ashlyn-
black/

ashlynblack.com

Published 28th January, 2015.
Last updated 12th May, 2016.
Page 16 of 22.

Sponsored by Readable.comReadable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/ashlyn-black/
http://www.cheatography.com/ashlyn-black/cheat-sheets/c-reference
http://www.gnu.org/software/libc/manual/html_node/Reserved-Names.html
http://www.cheatography.com/ashlyn-black/
http://ashlynblack.com
https://readable.com

C Reference Cheat Sheet
by Ashlyn Black (Ashlyn Black) via cheatography.com/20410/cs/3196/

Header Reserved KeywordsHeader Reserved Keywords

Name Reserved By Library

d_... dirent.h

l_... fcntl.h

F_... fcntl.h

O_... fcntl.h

S_... fcntl.h

gr_... grp.h

..._MAX limits.h

pw_... pwd.h

sa_... signal.h

SA_... signal.h

st_... sys/stat.h

S_... sys/stat.h

tms_... sys/times.h

c_... termios.h

V... termios.h

I... termios.h

O... termios.h

TC... termios.h

B[0-9]... termios.h

Header Reserved Keywords (cont)Header Reserved Keywords (cont)

GNU Reserved Names

Heap SpaceHeap Space

#include <stdlib.h>

AllocatingAllocating

malloc(); Returns a
memory
location if
successful,
NULL
otherwise.

type *x; x = malloc(sizeof(type)); Memory for
a variable.

type *y; y = malloc(sizeof(type) * length); Memory for
an
array/string.

struct type *z; z = malloc(sizeof(struct type)); Memory for
a structure.

DeallocatingDeallocating

free(ptrName); Removes
the memory
allocated to
ptrName

ReallocatingReallocating

By Ashlyn BlackAshlyn Black (Ashlyn
Black)
cheatography.com/ashlyn-
black/

ashlynblack.com

Published 28th January, 2015.
Last updated 12th May, 2016.
Page 17 of 22.

Sponsored by Readable.comReadable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/ashlyn-black/
http://www.cheatography.com/ashlyn-black/cheat-sheets/c-reference
http://www.gnu.org/software/libc/manual/html_node/Reserved-Names.html
http://www.cheatography.com/ashlyn-black/
http://ashlynblack.com
https://readable.com

C Reference Cheat Sheet
by Ashlyn Black (Ashlyn Black) via cheatography.com/20410/cs/3196/

Heap Space (cont)Heap Space (cont)

realloc(ptrName, size); Attempts to resize the memory
block assigned to ptrName.

The memory addresses you see are from virtual memory the
operating system assigns to the program; they are not physical

addresses.

Referencing memory that isn't assigned to the program will produce
an OS segmentation fault.

The Standard LibraryThe Standard Library

#include <stdlib.h>

RandomicityRandomicity

rand() Returns a (predictable) random
integer between 0 and
RAND_MAX based on the
randomiser seed.

RAND_MAX The maximum value rand() can
generate.

srand(unsigned integer); Seeds the randomiser with a
positive integer.

(unsigned) time(NULL) Returns the computer's tick-tock
value. Updates every second.

The Standard Library (cont)The Standard Library (cont)

SortingSorting

qsort(array, length, sizeof(type), compFunc);

qsort() Sort using the QuickSort algorithm.

array Array/string name.

length Length of the array/string.

sizeof(type) Byte size of each element.

compFunc Comparison function name.

compFunc

int compFunc(const void *a, const void b*){ return(*(int *)a - *(int *)b); }

int compFunc() Function name unimportant but must return an integer.

const void *a, const void *b Argument names unimportant but must identical otherwise.

return(*(int *)a - *(int *)b); Negative result swaps b for
result of 0 doesn't swap.

C's inbuilt randomiser is cryptographically insecure: DO NOT use it
for security applications.

By Ashlyn BlackAshlyn Black (Ashlyn
Black)
cheatography.com/ashlyn-
black/

ashlynblack.com

Published 28th January, 2015.
Last updated 12th May, 2016.
Page 18 of 22.

Sponsored by Readable.comReadable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/ashlyn-black/
http://www.cheatography.com/ashlyn-black/cheat-sheets/c-reference
http://www.cheatography.com/ashlyn-black/
http://ashlynblack.com
https://readable.com

C Reference Cheat Sheet
by Ashlyn Black (Ashlyn Black) via cheatography.com/20410/cs/3196/

The Character Type LibraryThe Character Type Library

#include <ctype.h>

tolower(char) Lowercase char.

toupper(char) Uppercase char.

isalpha(char) True if char is a letter of the alphabet, false
otherwise.

islower(char) True if char is a lowercase letter of the
alphabet, false otherwise.

isupper(char) True if char is an uppercase letter of the
alphabet, false otherwise.

isnumber(char) True if char is numerical (0 to 9) and false
otherwise.

isblank True if char is a whitespace character (' ',
'\t', '\n') and false otherwise.

The String LibraryThe String Library

#include <string.h>

strlen(a) Returns # of char in string a as an integer.
Excludes \0. (unsafe)

strcpy(a, b) Copies strings. Copies string b over string a
up to and including \0. (unsafe)

strcat(a, b) Concatenates strings. Copies string b over
string a up to and including \0, starting at
the position of \0 in string a. (unsafe)

strcmp(a, b) Compares strings. Returns false if string a
equals string b, true otherwise. Ignores
characters after \0. (unsafe)

strstr(a, b) Searches for string b inside string a.
Returns a pointer if successful, NULL
otherwise. (unsafe)

Alternatives

strncpy(a, b, n) Copies strings. Copies n characters from
string b over string a up to and including \0.
(safe)

By Ashlyn BlackAshlyn Black (Ashlyn
Black)
cheatography.com/ashlyn-
black/

ashlynblack.com

Published 28th January, 2015.
Last updated 12th May, 2016.
Page 19 of 22.

Sponsored by Readable.comReadable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/ashlyn-black/
http://www.cheatography.com/ashlyn-black/cheat-sheets/c-reference
http://www.cheatography.com/ashlyn-black/
http://ashlynblack.com
https://readable.com

C Reference Cheat Sheet
by Ashlyn Black (Ashlyn Black) via cheatography.com/20410/cs/3196/

The String Library (cont)The String Library (cont)

strncat(a, b, n) Concatenates strings. Copies n characters
from string b over string a up to and
including \0, starting at the position of \0 in
string a. (safe)

strncmp(a, b, n) Compares first n characters of two strings.
Returns false if string a equals string b, true
otherwise. Ignores characters after \0.
(safe)

Safe functions are those that let you specify the length of the input.
Unsafe functions do not, and carry the risk of memory overflow.

The Time LibraryThe Time Library

#include <time.h>

Variable TypesVariable Types

time_t Stores the calendar time.

struct tm *x; Stores a time & date breakdown.

tm structure members:

int tm_sec Seconds, 0 to 59.

int tm_min Minutes, 0 to 59.

int tm_hour Hours, 0 to 23.

int tm_mday Day of the month, 1 to 31.

The Time Library (cont)The Time Library (cont)

int tm_mon Month, 0 to 11.

int tm_year Years since 1900.

int tm_wday Day of the week, 0 to 6.

int tm_yday Day of the year, 0 to 365.

int tm_isdst Daylight saving time.

FunctionsFunctions

time(NULL) Returns unix epoch time
(seconds since 1/Jan/1970.)

time(&time_t); Stores the current time in a time
_t variable.

ctime(&time_t) Returns a time_t variable as a
string.

x = localtime(&time_t); Breaks time_t down into stru
ct tm members.

Unary OperatorsUnary Operators

by descending evaluation precedence

+a Sum of 0 (zero) and a. (0 + a)

-a Difference of 0 (zero) and a. (0 - a)

!a Complement (logical NOT) of a. (~a)

By Ashlyn BlackAshlyn Black (Ashlyn
Black)
cheatography.com/ashlyn-
black/

ashlynblack.com

Published 28th January, 2015.
Last updated 12th May, 2016.
Page 20 of 22.

Sponsored by Readable.comReadable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/ashlyn-black/
http://www.cheatography.com/ashlyn-black/cheat-sheets/c-reference
http://www.cheatography.com/ashlyn-black/
http://ashlynblack.com
https://readable.com

C Reference Cheat Sheet
by Ashlyn Black (Ashlyn Black) via cheatography.com/20410/cs/3196/

Unary Operators (cont)Unary Operators (cont)

~a Binary ones complement (bitwise NOT) of a. (~a)

++a Increment of a by 1. (a = a + 1)

--a Decrement of a by 1. (a = a - 1)

a++ Returns a then increments a by 1. (a = a + 1)

a-- Returns a then decrements a by 1. (a = a - 1)

(type)a Typecasts a as type.

&a; Memory location of a.

sizeof(a) Memory size of a (or type) in bytes.

Binary OperatorsBinary Operators

by descending evaluation precedence

a * b; Product of a and b. (a × b)

a / b; Quotient of dividend a and divisor b. Ensure divisor is
non-zero. (a ÷ b)

a % b; Remainder of integers dividend a and divisor b.

a + b; Sum of a and b.

a - b; Difference of a and b.

Binary Operators (cont)Binary Operators (cont)

a << b; Left bitwise shift of a by b places. (a × 2)

a >> b; Right bitwise shift of a by b places. (a × 2)

a < b; Less than. True if a is less than b and false otherwise.

a <= b; Less than or equal to. True if a is less than or equal to b
and false otherwise. (a ≤ b)

a > b; Greater than. True if a is greater than than b and false
otherwise.

a >= b; Greater than or equal to. True if a is greater than or
equal to b and false otherwise. (a ≥ b)

a == b; Equality. True if a is equal to b and false otherwise. (a
⇔ b)

a != b; Inequality. True if a is not equal to b and false
otherwise. (a ≠ b)

a & b; Bitwise AND of a and b. (a ⋂ b)

a ^ b; Bitwise exclusive-OR of a and b. (a ⊕ b)

By Ashlyn BlackAshlyn Black (Ashlyn
Black)
cheatography.com/ashlyn-
black/

ashlynblack.com

Published 28th January, 2015.
Last updated 12th May, 2016.
Page 21 of 22.

Sponsored by Readable.comReadable.com
Measure your website readability!
https://readable.com

b

-b

http://www.cheatography.com/
http://www.cheatography.com/ashlyn-black/
http://www.cheatography.com/ashlyn-black/cheat-sheets/c-reference
http://www.cheatography.com/ashlyn-black/
http://ashlynblack.com
https://readable.com

C Reference Cheat Sheet
by Ashlyn Black (Ashlyn Black) via cheatography.com/20410/cs/3196/

Binary Operators (cont)Binary Operators (cont)

a | b; Bitwise inclusive-OR of a and b. (a ⋃ b)

a && b; Logical AND. True if both a and b are non-zero. (Logical
AND) (a ⋂ b)

a || b; Logical OR. True if either a or b are non-zero. (Logical
OR) (a ⋃ b)

Ternary & Assignment OperatorsTernary & Assignment Operators

by descending evaluation precedence

x ? a : b; Evaluates a if x evaluates as true or b otherwise.
(if(x){ a; } else { b; })

x = a; Assigns value of a to x.

a *= b; Assigns product of a and b to a. (a = a × b)

a /= b; Assigns quotient of dividend a and divisor b to a. (a
= a ÷ b)

a %= b; Assigns remainder of integers dividend a and
divisor b to a. (a = a mod b)

a += b; Assigns sum of a and b to a. (a = a + b)

Ternary & Assignment Operators (cont)Ternary & Assignment Operators (cont)

a -= b; Assigns difference of a and b to a. (a = a - b)

a <<= b; Assigns left bitwise shift of a by b places to a. (a = a ×
2)

a >>= b; Assigns right bitwise shift of a by b places to a. (a = a
× 2)

a &= b; Assigns bitwise AND of a and b to a. (a = a ⋂ b)

a ^= b; Assigns bitwise exclusive-OR of a and b to a. (a = a ⊕
b)

a |= b; Assigns bitwise inclusive-OR of a and b to a. (a = a ⋃
b)

C Cheatsheet by Ashlyn BlackC Cheatsheet by Ashlyn Black

ashlynblack.com

By Ashlyn BlackAshlyn Black (Ashlyn
Black)
cheatography.com/ashlyn-
black/

ashlynblack.com

Published 28th January, 2015.
Last updated 12th May, 2016.
Page 22 of 22.

Sponsored by Readable.comReadable.com
Measure your website readability!
https://readable.com

b

-b

http://www.cheatography.com/
http://www.cheatography.com/ashlyn-black/
http://www.cheatography.com/ashlyn-black/cheat-sheets/c-reference
http://ashlynblack.com
http://www.cheatography.com/ashlyn-black/
http://ashlynblack.com
https://readable.com

	C Reference Cheat Sheet - Page 1
	Number Literals
	Primitive Variable Types
	Variables

	C Reference Cheat Sheet - Page 2
	C Reference Cheat Sheet - Page 3
	Extended Variable Types

	C Reference Cheat Sheet - Page 4
	Structures
	Type Definitions

	C Reference Cheat Sheet - Page 5
	Enumeration
	Unions
	Pointers

	C Reference Cheat Sheet - Page 6
	Arrays

	C Reference Cheat Sheet - Page 7
	Strings
	Functions
	Escape Characters

	C Reference Cheat Sheet - Page 8
	C Reference Cheat Sheet - Page 9
	main()
	Conditional (Branching)

	C Reference Cheat Sheet - Page 10
	Iterative (Looping)

	C Reference Cheat Sheet - Page 11
	Console Input/Output

	C Reference Cheat Sheet - Page 12
	File Input/Output

	C Reference Cheat Sheet - Page 13
	C Reference Cheat Sheet - Page 14
	Placeholder Types (f/printf And f/scanf)

	C Reference Cheat Sheet - Page 15
	Placeholder Formatting (f/printf And f/scanf)

	C Reference Cheat Sheet - Page 16
	C Reserved Keywords
	Preprocessor Directives
	Comments
	C / POSIX Reserved Keywords

	C Reference Cheat Sheet - Page 17
	Header Reserved Keywords
	Heap Space

	C Reference Cheat Sheet - Page 18
	The Standard Library

	C Reference Cheat Sheet - Page 19
	The Character Type Library
	The String Library

	C Reference Cheat Sheet - Page 20
	The Time Library
	Unary Operators

	C Reference Cheat Sheet - Page 21
	Binary Operators

	C Reference Cheat Sheet - Page 22
	Ternary & Assignment Operators
	C Cheatsheet by Ashlyn Black

