
Refcard #135

The MVVM Design Pattern
A Formula for Elegant, Maintainable Mobile Apps

by Colin Melia

Learn how to use Silverlight to create gorgeous mobiles apps for the Windows Phone. Included in this
Refcard is everything from an explanation of the MVVM Design Pattern to some examples of MVVM
Project Templates.

Free PDF

 DOWNLOAD SAVE

Refcardz: The MVVM Design Pattern SECTIONS

SECTION 1

Overview
If you are developing a Silverlight application for the Windows Phone, then this
Refcard is probably for you. For all but the most trivial of applications, the Model-
View-ViewModel (MVVM) pattern provides a solid pattern to follow for building a well
structured and maintainable application. Microsoft has taken that message seriously

MENU

Sign In / Join

/
/users/808519/colinizer.html
/asset/download/16

SECTION 2

MVVM Explained

structured and maintainable application. Microsoft has taken that message seriously
with Windows Phone by basing three of the four Visual Studio application project
templates on the MVVM pattern. This card provides an explanation of the MVVM
pattern, how it’s supported and how to follow it on Windows Phone. As a side benefit,
the content is almost entirely applicable to Silverlight desktop, web, slate and
Windows Presentation Foundation (WPF) applications as well.

Why MVVM on Windows Phone?
MVVM is an architecture pattern introduced by John Gossman in 2005 specifically
for use with WPF as a concrete application of Martin Fowler’s broader Presentation
Model pattern. Implementation of an application, based on the MVVM patterns, uses
various platform capabilities that are available in some form for WPF, Silverlight
desktop/web, and on Windows Phone with a little help from other libraries. Many
commercial applications, including Microsoft Expression products, were built
following MVVM.

The benefits of MVVM are listed as follows and can be largely summed up in the
phrase “Separation of Concerns”.

Modular architecture: given good inter-layer interface definitions, components
can be built and well tested independently.

Loose coupling: with one-way dependencies, changes to one layer don’t
require the other to be changed, rebuilt or retested.

Role separation: responsibilities and expertise can be focused (e.g.,designers
can build UI without needing to write code).

Tool friendly: the design of the pattern and the capabilities of the platform mean
that different tools best suited to the skills of the user can be used. These tools
include Visual Studio for developers and Blend for UI designers.

Maintainability: as with other patterns, a well-structured design makes it easier
to make modifications when updates or upgrades are done.

Less coding: the separation also leads to areas of development with less code,
which means less room for error; it also means less regression testing when
changes are made.

Testability: the pattern enables automated unit testing of code and minimizes
the need for UI-based testing.

The MVVM pattern is not a set of all-or-nothing rules that one must strictly
adhere to. It may not be appropriate for all applications, especially small
ones where implementing MVVM may require too much overhead.

Introduction
The MVVM pattern encourages developers to build their application as three layers
with the dependencies shown.

Model
The Model is the object model for the application. It can also be the ‘layer’ for data
and/or business logic that are completely devoid of UI features and any dependency
on the platform UI libraries or runtime. It can hold state and/or perform processing
on the state relevant to the business/problem domain. The data or the operations
performed on the data may be dealt with entirely in process memory (e.g., the
current value of rolled dice), or they may be retrieved, stored and processed
remotely using a data repository/service (e.g., a database or web service) with the
model in memory representing a subset of the available data (e.g., specific customer
records).

By creating a Model that is not bound to a single platform, it is easier to
share the data model across Silverlight, WPF and WP7 platforms with the
potential for reuse of model documentation, direct code or even binary

libraries. Recommend basing MVVM development on Silverlight 3 to ease code
sharing with WP7, Silverlight 3/4 and WPF 4.

View
The View is a ‘layer’ that represents and handles all the UI elements, including both
displayed UI (e.g., classic ‘buttons’ and more sophisticated displays) and UI-user
interactions (e.g., screen touch, button press, etc.).

There can be several Views over the same data with varying detail, depth or
representation (e.g., summary + details, order +. order + order line items, charting).

One of the capabilities a platform needs to enable the MVVM pattern well is the
ability to create UI declaratively with text instead of code. Those declarations can
include parts that ‘bind’ visual elements to data available in the Model, such that
value or list changes stay in sync between the View and Model data. This minimizes
or replaces imperative code for settings values between the View elements and data
in the Model. Also, since code in the UI can be difficult to test (with automation), this
reduces or eliminates the amount of UI-updating-related code to be tested. The
concept of binding can also be used to bind a user-driven event to an action to be
performed against the data in the Model.

performed against the data in the Model.

Creation of a View declaratively also opens up the possibility that someone with
good design/interactivity sensibilities can design the View (perhaps with a more
designer-focused tool) without coding/library expertise and somewhat independently
from the software developer.

ViewModel
While a View can be bound to the data in the Model or actions against that data, in
practice this is not done directly but via another ‘layer’ called the ViewModel or VM.
It is a “Model of the View” since it is like an abstraction of the View (with UI code) but
also a specialization of the Model that the View can bind to. Creation of the
ViewModel may be appropriate because:

It may be that the Model code is not controlled by a developer and also does
not expose data in a way that allows a View to be bound to it. In this case, the
ViewModel wraps the Model data to expose in a way that allows for declarative
binding with update notifications.

The Model may have data types that may not directly match the types used by
the UI components/libraries (e.g., a boolean value on the Model may need to
become a visibility enumeration specific to the UI libraries). In this case, the
ViewModel wraps the Model and performs the conversion between the View
and Model via the IValueConverter interface when data binding.

There are other complex operations beyond conversion to be performed that
are not UI related but don’t necessarily belong in the Model for the
business/problem domain (e.g., some kind of Aggregation or Visualization
computation). Having this code in the ViewModel means it’s easier to test.

The state of UI selection needs to be stored and tracked, but this does not
belong in the Model.

The ViewModel is also usually responsible for initiating operations to retrieve and
store Model data, which allows it to track operation state and, therefore, expose
visual feedback or state information to which the View can bind. The actual
operation (and obtaining progress) may be delegated to Model-specific classes.

Inter-Layer Dependency
By deliberately having the ViewModel in the middle, the following becomes possible:

The View only knows about the ViewModel. It does not know about, nor does it
have any reference to or dependency on, the Model. The reverse is also true;
therefore, the Model and View can be maintained separately using the
ViewModel as the ‘buffer’.

The ViewModel only knows about the Model. It does not know about the View.
Therefore, new views can be added without affecting the ViewModel. Given the
use of binding, it may even be possible to update the ViewModel without
breaking the View.

The Model only knows about itself. It does not know what ViewModels are

SECTION 3

MVVM on Windows Phone

The Model only knows about itself. It does not know what ViewModels are
wrapping it or what Views are created on top of the ViewModels.

In any case, all layers share a common knowledge of and are tightly coupled to
the basic types/objects of the underlying platform.

For the latest release of the free Windows Phone developer tools, go to
http://create.msdn.com/. A complete guide to building and deploying a
simple MVVM-based WP7 application for the marketplace is available -

http://bit.ly/WP7Die.

To start creating a Windows Phone application based on the MVVM pattern, select
File->New Project in Visual Studio, select “Silverlight for Windows Phone” from the
Installed Templates and then select one of the template types. To build from scratch,
select “Windows Phone Application” or see the section below about MVVM support
in other templates.

Model
The Model is based on a CLR type from a simple value type as a property…

…to a more complex set of nested classes, e.g., Contact…

A Model may be placed in a separate class file or project/assembly, or (as is often
the case for simple cases) it may be incorporated into the ViewModel.

ViewModel
The ViewModel is a CLR class (typically in a separate class file and sometimes in a
separate assembly) that encapsulates the Model or incorporates it. If the Model
includes nested objects or collections of objects, then a corresponding ViewModel
class hierarchy may be created. The primary goal is to expose the Model data and

public enum PhoneType
{
 Work,
 Home,
 Mobile
}
public class PhoneNumber
{
 public String Number { get; set; }
 public PhoneType PhoneType { get; set; }
}
public class Contact
{
 public String Name { get; set; }
 public List<PhoneNumber> PhoneNumbers { get; set; }
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

http://create.msdn.com/
http://bit.ly/WP7Die

class hierarchy may be created. The primary goal is to expose the Model data and
actions on the model data to the View for binding.

If the View only takes values from the ViewModel once at initialization, there would
be nothing more to do. But typically, the UI updates to reflect value and collection
changes in the ViewModel data (and possibly vice versa, e.g., for TextBox
changes).

The built-in UI controls for single values on Windows Phone (e.g. TextBlock,
TextBox, etc.) used in the View are amongst the controls that look for the
INotifyPropertyChanged interface on classes to which they are bound; therefore, the
interface should be implemented on the ViewModel. It consists of just one event,
and it is standard practice to create a helper method to fire the event, which is then
called by the setter method of the properties as they are changed.

Using INotifyPropertyChanged in a class requires this statement.

A ViewModel incorporating a simple Model with non-nested/collection properties
may look like this:

Remember that the integer named Value is the Model data in this class. When the
property setter method for Value is called, it checks to see if there is a change. If so,
calls the helper method that will inform the View (if bound to that object and
property) that something has changed.

If a Model contains a collection of items that can change and the UI must update to
reflect those changes, the collection must implement the INotifyCollectionChanged

using System.ComponentModel;

{
 private int Value;

 public int MyProperty
 {
 get { return Value;}
 set
 {
 if(Value == value)
 return;
 Value = value;
 OnPropertyChanged(“Value”);
 }
 }

 private void OnPropertyChanged(String PropName)
 {
 if(PropertyChanged != null)
 PropertyChanged(this, new PropertyChangedEventArgs(PropNa
me));
 }
 public event PropertyChangedEventHandler PropertyChanged;
}

1
2

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

reflect those changes, the collection must implement the INotifyCollectionChanged
interface. Alternatively, use the Generic ObservableCollection<T> class to do the
work, which requires this include statement:

A ViewModel called MyValuesVM (note the ‘s’) containing Model data that is a
Collection of objects of type MyValueVM would then look like this:

In this case, the following changes would be notified to the View:

The whole collection is set

Membership of the collection changes

The Value property on individual MyValueVM items change

If a Model has nested/collection objects and the UI needs to bind to
changes in the properties of those objects and there is access to the Model
code, then it be may easier to incorporate the model/classes into a

hierarchy of ViewModel classes. Otherwise (if the Model is not editable), then
access to data change events from the Model is needed to fire the PropertyChanged
event. To help catch otherwise silent runtime binding notification errors, the helper
function could be augmented with a reflection-based check to ensure the PropName
passed in matches an actual property.

View - DataContext

using System.Collections.ObjectModel;

public class MyValuesVM : INotifyPropertyChanged
{

 private ObservableCollection<MyValueVM> Values;

 public ObservableCollection<MyValueVM> MyProperty
 {

 get { return Values;}
 set
 {
 if(Values == value)
 return;
 Values = value;
 OnPropertyChanged(“Values”);
 }

 }

 private void OnPropertyChanged(String PropName)
 {
 if(PropertyChanged != null)
 PropertyChanged(this, new PropertyChangedEventArgs(Prop
Name));
 }

 public event PropertyChangedEventHandler PropertyChanged;
}

1
2

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

View - DataContext
The View layer in Silverlight applications can be implemented in code or
declaratively using XAML (where, simply put, at initialization, elements become
objects and attributes becomes properties). For Windows Phone, the View is a
typically a PhoneApplicationPage or a UserControl.

Any object used in the View that inherits from FrameworkElement (i.e., the visual
controls) has a DataContext property which can be set to a .NET object. Any
descendent FrameworkElement in the visual tree of the XAML page will also have
the same value for its DataContext unless explicitly overridden (in which case its
nested XAML descendants have that new value, and so on).

The DataContext is typically created and set in one of 4 ways:

1. Per View/page creation in the page/UserControl constructor (the xaml.cs file),
for example:

Per View/page creation in the page/UserControl XAML, for example with this
XML namespace at the top of the View page:

… and this resource XAML inside the page root element…

… and the DataContext set on a FrameworkElement item.

2. Per Application instance – in this case, the ViewModel (and possibly a
hierarchy of nested ViewModels) is created in the App.xaml XAML as a
resource (as above), and then parts of it are bound as the DataContext at the

public partial class MainPage : PhoneApplicationPage
{

 public MainPage()
 {
 this.DataContext = new CustomerVM();
 InitializeComponent();
 }
}

xmlns:myapp=”clr-namespace:MyAppNamespace”

<phone:PhoneApplicationPage.Resources>
 <myapp:CustomerVM x:Key=”MyCustomerVM”/>
</phone:PhoneApplicationPage.Resources>

<Grid x:Name=”TopGrid” DataContext=”{StaticResource MyCustomerVM}”>

</Grid>

1
2
3
4
5
6
7
8
9

10

1
2

1
2
3
4

1
2
3
4

resource (as above), and then parts of it are bound as the DataContext at the
root of different Views. This makes sense when the Model data must be
available throughout the application’s lifetime.

3. Using a ViewModel locator in the XAML. The DataContext of each view is
bound to properties of an application-instance-bound object using the Path
syntax. When the property of the root ViewModel is retrieved (following the
View-specific Path) for binding, the getter method can dynamically hand out an
instance of the appropriate ViewModel. Combine this with dependency injection
and mock encapsulated Models (when the application-instance-bound object is
created) for a powerful way to dynamically assign real or mock ViewModels and
Models, thus providing support for ViewModel testing, web-service-based Model
integration testing and design-time visual designer editing.

Keep Models encapsulated rather than incorporated into ViewModels to
enable clean dependency injection testing using mock Models.

View - Binding
With the DataContext property correctly set on the FrameworkElement-derived
visual element, various properties can be ‘bound’ to properties (or descendent
properties) of the DataContext object. This can be done programmatically or
declaratively.

Given a set of ViewModels like this (with notification helpers and calls omitted for
brevity)…

The declarative XAML excerpt may look like this…

public class CustomerVM
{
 public String ID { get; set; }
 public String Name { get; set }
 public ContactPreferencesVM Preferences { get; set; }
}
public class ContactPreferencesVM
{
 public Boolean CanCall { get; set; }
 public Boolean CanEmail { get; set; }
}

<StackPanel Orientation=”Horizontal” Name=”TopPanel”>
 <TextBlock Text=”{Binding ID}”/>
 <StackPanel>
 <TextBox Text=”{Binding Name, Mode=TwoWay}”/>
 <StackPanel Orientation=”Horizontal” DataContext=”{Binding
Preferences}”>
 <CheckBox IsEnabled=”{Binding CanEmail}”/>
 <CheckBox IsEnabled=”{Binding CanPhone}”/>
 </StackPanel>
 </StackPanel>
</StackPanel>

1
2
3
4
5
6
7
8
9

10
11
12

1
2
3
4
5
6
7
8
9

10
11
12

… which shows how to use inherited and explicit descendent DataContext and the
basic binding syntax.

The example also shows different data binding options (below) with TwoWay being
applicable to a TextBox where the updated should be transferred back to the
ViewModel to set the Model data.

Mode Effect in MVVM

OneTime
ViewModel property value copied to View element upon initialization. Seldom used, but
could help performance.

OneWay
(default)

ViewModel property value copied to View element upon initialization and when
ProperyChanged event called.

TwoWay
Same as one way, plus value copied back from View element to ViewModel property –
triggering event various by visual element type.

View – Collection Binding
When the ViewModel exposes model data as a collection, use a control in the View
that derives from ItemsControl (e.g., ListBox) and set the ItemsSource to the
collection. The control creates a sub-visual tree for each object in the collection and
automatically sets its DataContext to the item object. ItemsControls have an
ItemTemplate property, which can be set in XAML to a collection of XAML visual
elements (including the bindings) to represent visually each object in the collection,
for example:

Overall, using data binding and other View model coupling (shown later)
reduces or eliminates UI code that can otherwise be hard to test when
driven by user actions.

View - Converters
When Model types don’t match View types (e.g., Enumeration type to String), the
ViewModel can do the conversation or a converter can be used. To create a
converter, create a class derived from System.Windows.Data.IValueConverter and
implement Convert() and ConvertBack(), declare an instance of the class in the page
(or application) resource (as with ViewModel creation case 2 above) and then add
the converter to the binding syntax, for example.

<ItemsControl DataContext=”{Binding MyContact}” ItemsSource=”{Binding
PhoneNumbers}”>
 <ItemsControl.ItemTemplate>
 <DataTemplate>
 <StackPanel Orientation=”Horizontal”>
 <TextBlock Text=”{Binding Number}”/>
 </StackPanel>
 </DataTemplate>
 </ItemsControl.ItemTemplate>
</ItemsControl>

1
2
3
4
5
6
7
8
9

10
11

1

Use Converts (vs. conversion in ViewModel) if they are reusable and relate
to UI on one end, not for transforming business data.

<StackPanel Orientation=”Horizontal”>
 <TextBlock Text=”{Binding Number}”/>
 <TextBlock Text=”{Binding PhoneType, Converter={StaticResource
MyPhoneTypeToStringConverter}}”/>
</StackPanel>

1
2
3
4
5
6

SECTION 4

MVVM Project Templates
Project templates based on MVVM
Three of the project templates included with the free Windows Phone developer
tools, as indicated, are based on MVVM.

Build on these
templates and
create custom

Visual Studio templates for
increased team productivity -
http://msdn.microsoft.com/en-
us/library/6db0hwky.aspx.

Build on these
templates and
create custom

Visual Studio templates for
increased team productivity -
http://msdn.microsoft.com/en-
us/library/6db0hwky.aspx.

Quick Guide to the MVVM Project Templates
The information in the previous sections together with the following guide to MVVM
pattern use in the provided templates should help bring clarity to basic use of MVVM
on Windows Phone.

A single instance of the ViewModel called MainViewModel (incorporating Model
data) is created using the singleton pattern and exposed as the ViewModel
property on the App object in the App.xaml.cs file.

The ViewModel class is defined under the ViewModels folder. It has a
collection of ItemViewModel objects implemented using ObservableCollection.

MainPage is the primary View and its DataContext is set in code to
App.ViewModel in the page’s constructor in MainPage.xaml.cs.

For the Databound Application, the DataContext for the DetailsPage View is set
in code to an item in the App.ViewModel.Items collection in the page’s
constructor in DetailsPage.xaml.cs.

Consider separating Models, Views and ViewModels into separate folders
in Visual Studio Solution Explorer.

http://msdn.microsoft.com/en-us/library/6db0hwky.aspx
http://msdn.microsoft.com/en-us/library/6db0hwky.aspx

SECTION 5

MVVM Commands
Introduction
In order to take actions (e.g., load/save data), perform operations (e.g., compute
some results) or perform some navigation, a method is needed to convert a user
interaction event within the View (button press, touch, etc.) into a method call on the
ViewModel class. This is done by exposing ‘Commands’ on the ViewModel that,
when executed, either perform the action in the ViewModel or delegate it to the
Model or some other library.

ICommand
A command is implemented as an object property on the ViewModel (which can be
bound to by the View) that supports the ICommand interface that is defined on
Windows Phone under System.Windows.Input.

The Execute() method is self explanatory. The CanExecute() method is provided so
that a visual element bound to the object can query whether execution is currently
possible and potentially update itself visually to indicate the state.

The CanExecuteChanged event should be raised by the ViewModel whenever the
ability execute or not has changed.

On the interaction side, there needs to be a way to connect user interactions with
exposed commands.

Silveright controls have events to which code-based event handlers can be attached,
but this is UI code that is hard to test. In the Silverlight platform for the desktop/web,
the controls derived from ButtonBase (e.g., Button) have a Command property
which can be bound to the ICommand-based object properties on the ViewModel,
and the Button works with the ICommand interface as one would expect. However,
these are not implemented in Silverlight 3 and Silverlight for Windows Phone.

MVVM Light
In addition to no direct ICommand support in Windows Phone for controls to bind to
commands, exposing potentially many command objects, with each one as a private
class nested inside the ViewModel class can be quite time-consuming and verbose.

While it’s technically possible to improve these two issues by creating helper classes
(to make exposing commands easier) and creating Behaviours (to bind UI events to

public interface ICommand
{
 bool CanExecute(Object parameter);
 void Execute(Object parameter);

 event EventHandler CanExecuteChanged;
}

1
2
3
4
5
6
7
8

(to make exposing commands easier) and creating Behaviours (to bind UI events to
commands) that can be used in code, XAML and XAML-based tools like Blend, it
makes sense to use available third-party libraries to accelerate this process.

One such library is part of the MVVM Light toolkit available from GalaSoft -
http://www.galasoft.ch/mvvm/installing/manually/ or use NuGet.

To use MVVM Light libraries to easily expose commands in a concise way:

1. Add a reference to Galasoft.MvvmLight.WP7.dll, Galasoft.MvvmLight.
Extras.WP7.dll & System.Windows.Interactivity.dll that come in the toolkit

2. In the ViewModel class file, add:

3. Expose a property of type RelayCommand on the ViewModel:

4. Create a private method that performs the command

5. In the ViewModel constructor, instantiate the command so that it calls the
private method when Execute() is called on ICommand by the UI.

6. Optionally, add a second lambda expression to the RelayCommand constructor
that will be checked when CanExecute() is called on ICommand by the UI.

7. If necessary, call RaiseCanExecuteChanged() on the command object when
the ability to execute the command changes, so that bound UI knows to call
CanExecute() to update any visual cues.

8. Repeat steps 3 to 7 for each command to be exposed.

using GalaSoft.MvvmLight.Command;

public RelayCommand MyCommand { get; private set; }

private void DoMyCommand()
{
// Do command
}

private void DoMyCommand()
{
// Do command
}

1
2

1
2

1
2
3
4
5

1
2
3
4
5

SECTION 6

Other MVVM Libraries

To use the libraries to bind control events (e.g., a single touch that is equivalent to a
left mouse button down) to exposed commands in XAML (while writing no code):

1. Add the MVVM Light namespace at the others at the top of the XAML

2. Add this XAML like this inside the control’s element

3. Optionally, if the control has an IsEnabled property to be set according to the
CanExecute property and CanExecuteChanged event on the ICommand-
enabled object, set the MustToggleIsEnabledValue to True, e.g.

4.

<mvvmextra:EventToCommand Command=”{Binding MyCommand}”
MustToggleIs EnabledValue=”True”/>

5. Repeat 2 to 3 for all controls to be bound to exposed commands.

Using MVVM Libraries
As shown, the MVVM Light toolkit (for WP7, Silverlight and WPF on CodePlex) is
easy to start with and also includes other features:

A ViewModelBase class

Messenger system for inter-ViewModel communication

Visual Studio project and item templates

Visual Studio code snippets

To ease implementation, consider inheriting ViewModels from a library
base class (or create one), including support for the

xmlns:i=”clr-namespace:System.Windows.Interactivity;assembly=System.
Windows.Interactivity”
xmlns:mvvmextra=”clr-namespace:GalaSoft.MvvmLight.
Command;assembly=GalaSoft.MvvmLight.Extras.WP7”

<i:Interaction.Triggers>
<i:EventTrigger EventName=”MouseLeftButtonDown”>
<mvvmextra:EventToCommand Command=”{Binding MyCommand}”/>
</i:EventTrigger>
</i:Interaction.Triggers>

1
2
3
4
5

1
2
3
4
5
6

base class (or create one), including support for the
INotifyPropertyChanged interface inheritance/implementation and helper

functions.

Caliburn Micro
Calibrun Micro is a small but powerful micro-framework for WP7, Silverlight and
WPF on CodePlex that supports MVVM development including these features:

ActionMessages – for flexible binding of UI actions to ViewModel methods
(achieving what Commands do)

Bootstrapper & ViewLocator – for pattern configuration and handing out
ViewModels to Views

Screens and Conductors – for tracking active screens and selections

Prism
Prism 4 is a free library from Microsoft Patterns & Practices group for WP7,
Silverlight and WPF, originally concerned with building composite application. It
includes a WP7 library with helpful features (including MVVM support):

Commands with DelegateCommand – similar to RelayCommand in MVVM
Light.

Pub/sub eventing

Run-time data template selection

Application Bar helpers

UI Interaction Helpers

Read the in-depth Windows Phone 7 Developer Guide from Microsoft
Patterns & Practices to see Prism is a use in sample MVVM-based
application - http://msdn.microsoft.com/en-us/library/gg490765.aspx

http://msdn.microsoft.com/en-us/library/gg490765.aspx

SECTION 7

Blendability
Making WP7 MVVM applications ‘blendable’
The free tools for Windows Phone include a version of Blend that can be used for
design. Blend has a UI optimized for UI design, over coding.

If a developer produces ViewModel and Model classes, a UI designer can then
produce interactive UI in Blend and bind to the ViewModel, producing XAML in the
project that can then be loaded back into Visual Studio.

Blend (and the Visual Studio XAML designer) actually instantiates the XAML and
calls the constructor of the page class (i.e., the View). This may cause the
ViewModel to also be instantiated. For Blend (and Visual Studio) to work well with
MVVM-based applications for designing there are a few guidelines to follow:

Don’t call web services or database in the View or ViewModel constructor – the
designer may not load.

To see the design of the UI, try to use XAML over code, since controls added
programmatically will not show up.

Instantiate empty collections in constructors so they can be bound to.

If possible, use the full ViewModelLocator pattern to allow switching at design-
time to mock ViewModels with design data or mock Models injected into the
ViewModel. If that route doesn’t suit, then at least consider using design data
(see below).

To detect if the application is in a designer tool, use
System.ComponentModel.DesignerProperties.IsInDesignTool

Design Data
The project templates in the tools that support MVVM also show examples of
design-time data under the SampleData folder. Since XAML can fundamentally be
used to declare objects and properties, it can be used to declare sample
ViewModels (including nested object/collection properties). By using the
d:DataContext (with the design-time namespace prefix) in XAML (see MainPage.
xaml in the Data Bound application), the DataContext can be set on the page or
sub-element to use the static sample data.

A designer using Blend to build UI on top of ViewModel classes provided
by a developer can use a feature in Blend that automatically generates
XAML sample data based on the class properties of the ViewModel or

Model as well as generate XAML sample data based on XML files.

SECTION 8

Persistence
Data persistence
A ViewModel should wrap the action of saving/loading data it represents (which may
be delegated to a Model class). This may use a web service (using the WebClient
class, the

HttpWebRequest/Response class, or service proxy class inc. OData proxies) or if
data is stored locally, this would involve classes under System.IO and
System.IO.IsolatedStorage or third party databases (e.g., Sterling DB or Perst). If
properties are serializable, it may be convenient to just serialize the ViewModel and
Model state using classes under System.Xml.Serialization.

Having an application-instance-based object with one or more ViewModel properties
may provide a convenient ViewModel ‘hub’ for all the pages in your application.

Tombstoning
An application may have volatile session-specific Model data (e.g., data entry in
progress and not yet saved) and/or View Model UI state that can be lost if the
application is ‘tombstones’ (de-activated by the OS to preserve foreground
application performance or to perform another task and possibly never re-activated).

ViewModels should subscribe under PhoneApplicationService to the Deactived
event and use its Current.State dictionary to save this transient state on Deactivated
and load back (if necessary/ available) in both the ViewModel constructor and the
Activated event, the transient data along with any non-session-specific data. See
more on tombstoning on MSDN:

http://msdn.microsoft.com/en-us/library/ff817008(v=VS.92).aspx

When using MVVM with TextBox controls bound to data, use something
like the Prism UpdateTextBindingOnPropertyChanged class in XAML to
ensure all Text changes are transferred through the binding prior to a

tombstone or Application bar event.

Publications

Latest

Popular

Featured

http://msdn.microsoft.com/en-us/library/ff817008(v=VS.92).aspx

 NaNundefined NaNundefined

ABOUT US
About DZone
Send feedback
Careers

ADVERTISE
Media Kit
sales@dzone.com
+1 (919) 443-1644

CONTRIBUTE ON DZONE
MVB Program
Zone Leader Program

LEGAL
Terms of Service
Privacy Policy

CONTACT US
150 Preston Executive Drive
Cary, NC 27513
info@dzone.com
+1 (919) 678-0300

LET'S BE FRIENDS

/pages/about
mailto:support@dzone.com
http://dzone.applytojob.com/apply
/pages/advertise
mailto:sales@dzone.com
tel:+19194431644
/pages/mvb
/pages/zoneleader
/pages/tos
/pages/privacy
mailto:info@dzone.com
tel:+19196780300
/pages/feeds
https://twitter.com/DZone
https://www.facebook.com/DZone-259639764711
https://plus.google.com/+dzone/posts
https://www.linkedin.com/company/dzone

	The MVVM Design Pattern
	A Formula for Elegant, Maintainable Mobile Apps
	Overview
	Why MVVM on Windows Phone?

	MVVM Explained
	Introduction
	Model
	View
	ViewModel
	Inter-Layer Dependency

	MVVM on Windows Phone
	Model
	ViewModel
	View - DataContext
	View - Binding
	View – Collection Binding
	View - Converters

	MVVM Project Templates
	Project templates based on MVVM
	Quick Guide to the MVVM Project Templates

	MVVM Commands
	Introduction
	ICommand
	MVVM Light

	Other MVVM Libraries
	Using MVVM Libraries
	Caliburn Micro
	Prism

	Blendability
	Making WP7 MVVM applications ‘blendable’
	Design Data

	Persistence
	Data persistence
	Tombstoning

	Publications

