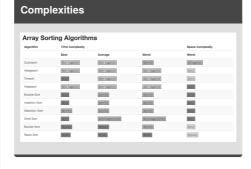
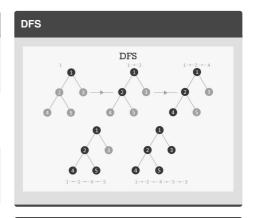
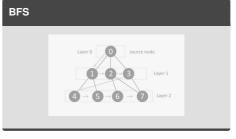
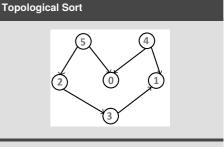
Alg420 Cheat Sheet


Summations


by cheatyboi via cheatography.com/55656/cs/14797/


Sieve of Erath // Java program to print all primes smaller than or equal to // n using Sieve of Eratosthenes class SieveOfEratosthenes void sieveOfEratosthenes(int n) // Create a boolean array "prime[0..n]" and initialize // all entries it as true. A value in prime[i] will // finally be false if i is Not a prime, else true. boolean prime[] = new boolean[n+1]; for(int i=0;i<n;i++) prime[i] = true; for(int p = 2; p*p <=n; p++) // If prime[p] is not changed, then it is a prime if(prime[p] == true) // Update all multiples of p for(int i = p*2; i<= n; i += p) prime[i] = false; } // Print all prime numbers for(int i = 2; i <= n; i++) if(prime[i] == true) System.out.print(i

3 Types of Decrease and Conquer		
Decrease by constant	Decrease by constant factor	variable- Size decrease
insertion sort	binary search and bisection method	Euclid's algoirthm
topolgical sorting	exponentiation by squaring	selection by partition
algorithms for generating permutations, subsets	multiplication a la russe	nim-like games


$\begin{bmatrix} \text{sum}(i, i=0..n) \\ \frac{n(n+1)}{2} \end{bmatrix}$ $\begin{bmatrix} \text{sum}(i,i=1..n) \\ \frac{n(n+1)}{2} \end{bmatrix}$ $\begin{bmatrix} \text{sum}(n,i=0..n) \\ n(n+1) \end{bmatrix}$ $\begin{bmatrix} \text{sum}(2^{i}, i=0..n-1) \\ 2^{n}-1 \end{bmatrix}$ $\begin{bmatrix} \text{sum}(2^{i}, i=0..n-2) \\ 2^{n-1}-1 \end{bmatrix}$ $\begin{bmatrix} \text{sum}(i^{2}, i=0..n) \\ \frac{n(2n+1)(n+1)}{6} \end{bmatrix}$ $\begin{bmatrix} \text{sum}(i^{3}, i=0..n) \\ \frac{n^{2}(n+1)^{2}}{4} \end{bmatrix}$

Brute-Force Problems			
Problem	Method	Complexity	
TSP	Exhaustive	N!	
KnapSack	Exhaustive	n*W	

Order: 5,4,2,3,1,0

Generate Permutations Example n=3: start: 1 12, 21 123, 132, 312 321, 231, 213 finish

By **cheatyboi** cheatography.com/cheatyboi/

Published 20th February, 2018. Last updated 20th February, 2018. Page 1 of 2. Sponsored by **Readability-Score.com**Measure your website readability!
https://readability-score.com

Alg420 Cheat Sheet by cheatyboi via cheatography.com/55656/cs/14797/

Euclidean Algorithm

Example:

GCD(270,192)

270/192 = 1 R 78

GCD(192, 78)

192/78 = 2 R 36

GCD(78,36)

78/36 = 2 R 6

GCD(36/6)

36/6 = 6 R0

since R = 0, 6 is GCD

Reasonable Algorithms

Pros Cons Wide applicability Rarely Yields Efficient Simple Unacceptably Slow

Not as constructive as others

By **cheatyboi** cheatography.com/cheatyboi/

Published 20th February, 2018. Last updated 20th February, 2018. Page 2 of 2. Sponsored by **Readability-Score.com**Measure your website readability!
https://readability-score.com