
iPython History Cheat Sheet
by vjust via cheatography.com/20548/cs/3299/

History flags summar ized.

Flags for the history command
hist -n -- print line numbers

hist -g -- print history for your past sessions (not just the current one)

hist -f filena me.py -- writes history lines to filena me.py

hist -l 10 -- will limit output to last 10 lines

hist -g timeit -- will filter lines that contain the string " tim eit "
hist -u -g timeit -- same as filter, but will only print unique lines

hist -o -n -- also print outputs

Note:T yping histo ry?? in iPython will give you similar info.

Previous iPython sessions

Synt ax: hist -n ~1/
hist -n ~1/20 - means one session back, and 20th input line

hist -n ~2/20 - means two sessions back, and 20th input line

Using hist -n 20 (i.e. without the ~ sign) defaults to the current ipython

session.

Re-execute a history line

Synt ax: rerun <hi story refere nce >
rerun 20 will execute line 20 of the current session

rerun ~1/20 will execute line 20 of the previous session

rerun 88-90 will execute lines 88,89, 90 of history

Recalling input history (for inline editing)

Synt ax: recall <hi story refere nce >
1. recall 42 -- will recall line 42, and give you the prompt for editing

2. recall myfunc -- will recall the most recent line containing myfunc,

withe the same effect.
Hitting enter after the edit will execute.

Saving history to a file

Synt ax: save filena me.py <hi story refere nce >
1.save mymodu le.py 22-40 25 -- Saves lines 22-40, 25 to file

mymodu le.py
2.save -a -- will append

Grepping or filtering history lines

Synt ax: hist -g <reg exp>
hist -g func1 -- will list all history lines containing " fun c1"

hist -gn func1 -- same thing. adds line numbers

Editing history in an editor

Syntax: edit <hi story refere nce >

edit 24 28 47 - loads the lines in order, in your configured ipython

editor

Output history editing via the " _oh " variable

Summary : Ipython allows you to edit both your past inputs, as well as
past command outputs - so you if you want to avoid retyping this is handy.
The built-in list variable " _oh " contains all your output history.
Syntax : "edit _oh[<l ine-num of output histor y>] "
use "edit _oh[16 5]" to open output line 165 in your editor.
Example --
`
In [165] : def myfunc():
print " hel lo"
....
In [200] : edit 165 # opens line 165 in editor we made changes to that func
w/o saving it to a file
out[200]: def myfunc()\n print " hel lo" \n
....
...
In [210]: edit _oh[200] # loads the func in editor
`

Use "edit -x" in case you are editing non-code stuff (to prevent) execution
when you leave the editor.

Edit a function that you defined inline

Syntax : edit <fu ncn ame>
Example - An inline function is defined intera cti vely, and then edited.
`
In [1] : def myfunc()
print " hel lo"
In [2] edit myfunc
`

Create a macro from history

Use the %macro command to create a macro from multiple history lines.
Example (lines 10 and 11) from history are as follows :
10: x=1
11: somefu nc(x)
You can create a macro as follows :
In [20]: %macro my_macro 10-11
Now typing my_macro will execute those lines.

By vjust
cheatography.com/vjust/

Published 10th February, 2015.
Last updated 4th December, 2015.
Page 1 of 1.

Sponsored by ApolloPad.com
Set Your Pen Free and Finish Your Novel!
https://apollopad.com

http://www.cheatography.com/
http://www.cheatography.com/vjust/
http://www.cheatography.com/vjust/cheat-sheets/ipython-history
http://www.cheatography.com/vjust/
https://apollopad.com

	iPython History Cheat Sheet - Page 1
	History flags summarized.
	Editing history in an editor
	Output history editing via the "_oh" variable
	Previous iPython sessions
	Re-execute a history line
	Edit a function that you defined inline
	Recalling input history (for inline editing)
	Saving history to a file
	Create a macro from history
	Grepping or filtering history lines

